0 CpxTRS
↳1 DecreasingLoopProof (⇔, 1281 ms)
↳2 BOUNDS(n^1, INF)
↳3 RenamingProof (⇔, 0 ms)
↳4 CpxRelTRS
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 typed CpxTrs
↳7 OrderProof (LOWER BOUND(ID), 0 ms)
↳8 typed CpxTrs
↳9 RewriteLemmaProof (LOWER BOUND(ID), 305 ms)
↳10 BEST
↳11 typed CpxTrs
↳12 RewriteLemmaProof (LOWER BOUND(ID), 981 ms)
↳13 BEST
↳14 typed CpxTrs
↳15 RewriteLemmaProof (LOWER BOUND(ID), 2299 ms)
↳16 BEST
↳17 typed CpxTrs
↳18 RewriteLemmaProof (LOWER BOUND(ID), 1426 ms)
↳19 BEST
↳20 typed CpxTrs
↳21 LowerBoundsProof (⇔, 0 ms)
↳22 BOUNDS(n^1, INF)
↳23 typed CpxTrs
↳24 LowerBoundsProof (⇔, 0 ms)
↳25 BOUNDS(n^1, INF)
↳26 typed CpxTrs
↳27 LowerBoundsProof (⇔, 0 ms)
↳28 BOUNDS(n^1, INF)
↳29 typed CpxTrs
↳30 LowerBoundsProof (⇔, 0 ms)
↳31 BOUNDS(n^1, INF)
↳32 typed CpxTrs
↳33 LowerBoundsProof (⇔, 0 ms)
↳34 BOUNDS(n^1, INF)
-(x, 0) → x
-(0, s(y)) → 0
-(s(x), s(y)) → -(x, y)
f(0) → 0
f(s(x)) → -(s(x), g(f(x)))
g(0) → s(0)
g(s(x)) → -(s(x), f(g(x)))
-(x, 0') → x
-(0', s(y)) → 0'
-(s(x), s(y)) → -(x, y)
f(0') → 0'
f(s(x)) → -(s(x), g(f(x)))
g(0') → s(0')
g(s(x)) → -(s(x), f(g(x)))
They will be analysed ascendingly in the following order:
- < f
- < g
f = g
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
-, f, g
They will be analysed ascendingly in the following order:
- < f
- < g
f = g
Induction Base:
-(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)
Induction Step:
-(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_0':s2_0(+(1, 0)))
Induction Step:
g(gen_0':s2_0(+(1, +(n360_0, 1)))) →RΩ(1)
-(s(gen_0':s2_0(+(1, n360_0))), f(g(gen_0':s2_0(+(1, n360_0))))) →IH
-(s(gen_0':s2_0(+(1, n360_0))), f(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n360_0))) → *3_0, rt ∈ Ω(n3600)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
f(gen_0':s2_0(+(1, 0)))
Induction Step:
f(gen_0':s2_0(+(1, +(n4633_0, 1)))) →RΩ(1)
-(s(gen_0':s2_0(+(1, n4633_0))), g(f(gen_0':s2_0(+(1, n4633_0))))) →IH
-(s(gen_0':s2_0(+(1, n4633_0))), g(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n360_0))) → *3_0, rt ∈ Ω(n3600)
f(gen_0':s2_0(+(1, n4633_0))) → *3_0, rt ∈ Ω(n46330)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_0':s2_0(+(1, 0)))
Induction Step:
g(gen_0':s2_0(+(1, +(n63755_0, 1)))) →RΩ(1)
-(s(gen_0':s2_0(+(1, n63755_0))), f(g(gen_0':s2_0(+(1, n63755_0))))) →IH
-(s(gen_0':s2_0(+(1, n63755_0))), f(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n63755_0))) → *3_0, rt ∈ Ω(n637550)
f(gen_0':s2_0(+(1, n4633_0))) → *3_0, rt ∈ Ω(n46330)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n63755_0))) → *3_0, rt ∈ Ω(n637550)
f(gen_0':s2_0(+(1, n4633_0))) → *3_0, rt ∈ Ω(n46330)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n360_0))) → *3_0, rt ∈ Ω(n3600)
f(gen_0':s2_0(+(1, n4633_0))) → *3_0, rt ∈ Ω(n46330)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
g(gen_0':s2_0(+(1, n360_0))) → *3_0, rt ∈ Ω(n3600)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
-(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.